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Abstract 

Background

Genetic factors can influence and predict patient outcomes. The association of inter-

actions of germline SNPs with patient outcomes is an understudied area of prognos-

tic research. In this study, we applied the first genome-wide SNP-SNP interaction 

analysis in relation to colorectal cancer outcomes.

Objectives

Our objective was to explore interacting SNP loci at the genome-wide level that pre-

dict the risk of local or distant recurrence (RMFS) in a cohort of stage I-III colorectal 

cancer patients from the Canadian province of Newfoundland and Labrador.

Methods

The patient cohort consisted of 430 unrelated Caucasian patients. Genetic and medi-

cal data was collected previously and the genetic data consisted of a total of 384,415 

genotyped SNPs. The PLINK epistasis function was utilized to examine pairwise 

SNP interactions. Select interactions were assessed by multivariable Cox-regression 

models, adjusting for established clinical covariates. Genomic regions identified were 

explored for additional interactions. Published databases were utilized to retrieve 

biological information about the loci identified.

Results

After Bonferroni correction for multiple testing, no interaction remained significant. 

We present the top 20 interactions. The interaction p-values ranged from p = 1.37E-8 

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0321967&domain=pdf&date_stamp=2025-06-18
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to p = 2.14E-9 in this set. Interactions were also tested by multivariable Cox regres-

sion models including established clinical covariates. Many of the SNPs were intronic 

and some of them were functional (e.g., expression quantitative expression loci). 

Analysis of the other SNPs in the same genomic regions as the interacting SNPs led 

to the identification of three additional interaction models.

Conclusions

We present the results of the first genome-wide SNP-SNP interaction analysis in 

colorectal cancer outcomes. While no SNP-SNP interaction remained significant after 

correction for multiple testing, our methodology emphasizes the additional knowledge 

that can be obtained using interaction analyses while studying prognostic markers.

Introduction

Colorectal cancer is one the most common cancers globally [1–3]. As in the case of 
many complex diseases, in colorectal cancer there has been a great interest in iden-
tifying prognostic biomarkers (including genetic variants such as Single Nucleotide 
Polymorphisms [SNPs]) [4]. The past decade has witnessed tremendous progress in 
our fundamental understanding of biology, health, and disease, as well as in technol-
ogy, which has allowed researchers to conduct larger and more challenging studies, 
such as genome-wide association studies (GWASs).

While the GWAS–which often examines individual associations of SNPs with 
an outcome–is a widely applied method [5–10], it is important to move beyond it. 
This is because GWAS identified variants usually explain only a small fraction of 
the phenotypic variation among patients, suggesting that there are genetic mecha-
nisms or variations still waiting to be discovered (i.e., “missing heritability” [11–14]). 
Genetic interactions are one of the possible mechanisms that can help elucidate 
the missing heritability. In simple terms, interactions (sometimes also referred to as 
epistasis) are when the effect of a variant on a phenotype is dependent on another 
variant, where its effect may increase (synergistic interaction) or decrease (antago-
nistic interaction) in the presence of the other locus [11–17]. As GWASs only exam-
ine the effect of one SNP at a time, they cannot identify these interactive effects.

A number of methods have been developed to examine interactions  
[14,18–29] and further development in this area is expected, including further artifi-
cial intelligence-based methods [29]. Since interaction analyses are advanced when 
compared to one-SNP-at-a-time type analyses, examining interactions can provide 
unique, novel, and exciting information that can support current studies and further 
progress prognostic research. Interactions, however, are not well studied in colorectal 
cancer prognosis. One of the reasons for this is the computational load required to 
examine interactions and a lack of availability of tools that can handle the large-scale 
data that is common in genome-wide settings. A few interaction studies in colorectal 
cancer outcomes, some led by our lab, have been published [30–35]; while these 
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studies opened new ways to examine prognostic biomarkers, they were restricted to candidate genes and/or pathways, 
missing the opportunity to provide a more comprehensive landscape of the interactions at the genome-wide level.

In the presented study, our aim was to explore genome-wide SNP-SNP interactions that may be associated with the 
5-year (local or distant) recurrence risk in colorectal cancer. Our findings underline the potential utility of examining SNP-
SNP interactions in biomarker research, can inform future studies, and can inspire other groups to integrate interaction 
analyses into their studies.

Methods

Ethics statement

This study has been approved by the provincial Health Ethics Research Board (HREB #2018.051; #2009.106). As this 
study was a secondary use of data study, HREB waived the requirement for patient consent. For this study, authors did 
not require access to information that could identify individual participants during or after data collection. However, previ-
ously Megan Carey had access to patient identifiers while updating the outcome data (HREB # 15.006).

Patient cohort, SNP genotyping and clinical data

The patient clinical and genetic data used in this study were collected by the Newfoundland Familial Colorectal Can-
cer Registry (NFCCR) investigators between January 1, 1999 and January 24, 2018. The data used in this study was 
accessed between October 22, 2022 and July 9, 2024. In brief, the NFCCR recruited around 750 patients diagnosed 
with colorectal cancer between January 1999–December 2003 [36]. Genome-wide SNP genotype data was previously 
obtained using the Illumina® Omni1-Quad human SNP genotyping platform at a genotyping facility (Centrillion Biosci-
ences, USA) [7]. DNA extracted from non-tumor (e.g., blood) samples was used in genotyping reactions. Patients whose 
genotype data failed the standard quality control (QC) measures as well as those patients who were non-Caucasian and 
1st-, 2nd-, or 3rd-degree relatives were removed from the patient cohort, leaving 505 patients with genome-wide SNP geno-
type data (consisting of 729,737 SNPs) [7]. Clinical and demographic data was collected using a variety of resources over 
time, including medical charts, patient questionnaires, and data from local tumor registries [36–38]. The last follow up date 
was January 24, 2018 [38].

PLINK uses logistic regression in its epistasis analysis. Therefore, we processed the outcome data to fit this 
method. The clinical endpoint used for this study was 5-year recurrence or metastasis free survival (RMFS) sta-
tus, where events were defined as recurrence or metastasis at or before 5 years after diagnosis of colorectal can-
cer. Initially, patients who did not experience recurrence or metastasis and whose last follow-up time was before 5 
years were removed from the dataset, as their survival at 5 years was unknown (censored patients; n = 11). Stage IV 
patients were also removed from the data as our study focuses on the risk of recurrence or metastasis and stage I, 
II, and III patients are susceptible to these outcomes (i.e., stage IV patients would already have metastases at the 
time of diagnosis). Patients with missing covariate data were also excluded. After these data processing steps, there 
remained 430 stage I-III patients in the cohort for the PLINK interaction analysis. Baseline features for this patient 
cohort are shown in Table 1.

SNP genotype data extraction and quality control measures

All genotype data processing prior to analysis was performed using PLINK 1.9 [39]. Genotypes of SNPs were extracted 
for the patient cohort using PLINK with the following standard parameters: Missing genotypes = 0, Minor Allele Frequency 
(MAF) ≥ 0.05, Hardy-Weinberg Equilibrium (HWE) p-value > 0.0001. Genotype data was restricted to autosomal chromo-
somes, as association analysis of genotypes of the variants on sex chromosomes requires special approaches in cohorts 
including both men and women, such as ours [41].
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The SNP dataset, once extracted, was then subject to pruning. Linkage Disequilibrium (LD)-based pruning was per-
formed using the PLINK commands --indep-pairwise 50 5 0.8 and --extract [42]. This removed one SNP of each pair of 
SNPs with an r2 greater than 0.8, within a window of 50 SNPs, moving the window by 5 SNPs each step. As a result, 
384,415 SNPs were included in the final data set.

PLINK epistasis function

Epistasis analysis was performed using PLINK 1.9. [39] and the --epistasis command. With this command, PLINK per-
forms logistic regression analysis for every pair of SNPs in the dataset. PLINK was chosen for this analysis due to its 
speed, robustness, memory efficiency, and simplicity. The output of the --epistasis command was retrieved and stored in 
two files (an epi.cc and an epi.cc.summary file). As a result of this epistasis analysis, 73,887,253,905 interactions were 
tested.

Statistical analyses

After Bonferroni correction for multiple testing, none of the interaction p-values remained significant. We report the 20 
SNP pairs identified in the epi.cc output file with the lowest interaction p-values (“top 20 SNP pairs”). Genotype data was 
extracted for these pairs using an additive genetic model with the PLINK command --recodeA.

We constructed univariable Cox regression models for the top SNPs as well as two-SNP Cox regression models (with 
interaction term) adjusting for clinical covariates of location (rectum vs. colon), stage (II vs I and III vs I), adjuvant chemo-
therapy (yes vs no), and baseline radiotherapy (yes vs no) [38]. Time to recurrence data was utilized in Cox regression 
analyses. During these latter analyses, 11 patients who were censored, and hence removed from the PLINK analysis, 
were added back to the dataset in order to limit bias. Statistical analyses were done using SPSS (IBM; version 29.0.0.0 
(241) for Windows). Bonferroni-adjusted significance thresholds are p < 0.00128 and p < 0.0025 for univariable and 
multivariable Cox regression analyses, respectively.

Table 1.  Baseline characteristics of the patient cohort included to the PLINK epistasis analysis.

Variable N (Total 430) %

Location

Colon 273 63

Rectum 157 37

Stage

I 84 20

II 188 44

III 158 37

Baseline Adjuvant Chemotherapy

Yes 252 59

No 178 41

Baseline Adjuvant Radiotherapy

Yes 118 27

No 312 73

Rounded 5-year RMFS Status

0 (no recurrence or metastasis) 322 75

1 (recurrence and/ or metastasis) 108 25

RMFS Follow-up Time* (Years) Median: 15; 95% CI: 
14.7–15.3

N: Number of patients; RMFS: Recurrence-Metastasis-Free Survival. *Calculated by reverse Kaplan-Meier method [40].

https://doi.org/10.1371/journal.pone.0321967.t001

https://doi.org/10.1371/journal.pone.0321967.t001
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Analysis of the interactions in identified genomic regions

As LD-pruning was performed, which removes one SNP of each high-LD pair from the dataset, only a subset of SNPs in 
our dataset were directly included in our initial PLINK epistasis analysis. In order to address the possibility that interac-
tions involving the pruned SNPs may have stronger associations with RMFS than the interactions identified in our initial 
analysis, a subsequent analysis was performed. SNPs which were in LD with those identified in the top 20 interactions of 
our initial epistasis analysis (PLINK r2 inter-chr function) were used to form a new dataset, along with the 39 unique SNPs 
from the top 20 interactions (one SNP appeared in two interactions). The PLINK epistasis function was again run using 
this new dataset. There were 30 models found with a p-value ≤ 1.37E-8 (the lowest p-value identified in the initial PLINK 
interaction analysis). These models included the original 20 interactions, leaving 10 new models for us to consider. In the 
latter models, each model included one SNP in common with an original interaction set and a new SNP (that is in high-LD 
with the second SNP from the original interaction). Among those, only three new alternative interactions had a PLINK 
interaction p-value lower than the original interaction which it corresponded to – these are noted in this manuscript. For 
each of these alternative interactions, 2-SNP (with interaction term) Cox regression analyses adjusting for covariates were 
performed as described above.

Bioinformatics tools and databases

In order to explore the biological knowledge available about the identified loci, we utilized published resources including 
RegulomeDB [43], GTEx [44], and PUBMED. RegulomeDB ranks variants based on functionality using a scoring system 
(rank scores vary between 1–7), where with decreasing rank score, the evidence for functionality increases. For exam-
ple, a ranking score of 1 means the variant is at least an expression quantitative trait/chromatin accessibility quantitative 
trait locus (eQTL/caQTL) and a transcription factor binding site (https://regulomedb.org/regulome-help/), and hence, is 
more likely to have functional consequences compared to a variant with a higher ranking score. GTEx, on the other hand, 
includes expression and eQTL data for normal tissues. Since GTEx does not include data from rectum, here we present 
the GTEx data extracted for sigmoid and transverse colon only. We note that since none of the interactions remained sig-
nificant after correction for multiple testing (see Results), the results of these analyses should rather be taken as explor-
ative in terms of how they relate to colorectal cancer outcomes, but not definitive.

Results

The flow-chart of the study workflow is shown in Fig 1. After applying the Bonferroni correction, none of the interactions 
identified by PLINK remained significant. The top 20 pairs of SNPs with the lowest interaction p-values identified by 
PLINK are shown in Table 2. Except for two cases, interacting SNPs were located in different chromosomes. One SNP 
(rs742257 on chromosome 1) was identified in two interacting SNP sets.

We performed univariable Cox regression (for each SNP; Table 3) and multivariable Cox regression analyses (for each 
SNP pair: Table 4) to examine the SNPs’ relationships with the outcome. No SNP was individually associated with RMFS 
in the univariable Cox regression analysis (Bonferroni adjusted significance threshold < 0.00128). This is expected, as 
interacting SNPs are not expected to be associated with the outcome individually. In the multivariable models, all interac-
tions had p-values varying between 1.04E-5 and 3.48E-10 (Bonferroni corrected significance threshold is p < 0.0025).

We next examined whether there were interactions with smaller p-values that may have been missed because 
of SNP pruning, within the genomic regions captured by the identified SNPs. As a result, three new interacting SNP 
pairs were found (also called “alternative” sets or models in this manuscript). In these new models, one of the SNPs 
was the same variant between the original and the alternative models): rs4678497 and rs7212295, as an alternative 
to rs4678497-rs12601535; rs6757680-kgp11888590 as an alternative to rs6757680-rs9305669; and rs4485715 and 
rs914491 as an alternative to rs9855001-rs914491. In multivariable Cox regression analyses, two of these interactions 
had a p-value lower than the original interaction (Table 4).

https://regulomedb.org/regulome-help/
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Fig 1.  The study workflow. LD: Linkage Disequilibrium; RMFS: Recurrence-Metastasis Free Survival; SNP: Single Nucleotide Polymorphism.

https://doi.org/10.1371/journal.pone.0321967.g001

https://doi.org/10.1371/journal.pone.0321967.g001
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S1 Table summarizes the MAFs, genetic locations, associated genes, RegulomeDB rankings, and eQTL information for 
the SNPs. Many of the SNPs were intronic SNPs and two SNPs were located in coding regions (rs12601535, a synony-
mous substitution located in MYO18A, and rs9671369, a missense variant in the SYNE3 gene). Twenty SNPs identified 
in this study were highly likely to be functional (based on RegulomeDB [43] rank of 1a-1f; S1 Table). Interestingly, in some 
cases both of the interacting SNPs were likely functional (Table 2).

Based on the GTEx [44] data, four of the SNPs in the list were eQTLs in sigmoid and/or transverse colon tissues 
(eQTLs are variants that are associated with the expression levels of certain genes [43]) (rs2247213; rs6056615; 
rs12436380; and rs35579818 being eQTLs for LINC01352, HLX-AS1, and RP11-295M18.6; RSPO4; TRIM9; and 
TMEM80, HRAS, and RNH1 genes, respectively). Additionally, rs9984518 identified in one of the alternative SNP sets 
was found to be an eQTL for WRB in transverse colon. No entry was returned when PUBMED and dbCPCO [45] data-
bases were searched with the IDs of the SNPs identified in this study. Lastly, a literature search showed that many of the 
genes identified in this study were linked to colorectal cancer development, progression, or outcomes previously (see 
Discussion).

Discussion

Colorectal cancer is a common disease worldwide [1–3] and in Canada [46]. New prognostic markers can help prognosis, 
improve understanding of the biological reasons for variable prognosis among patients, and aid in the development of 

Table 2.  PLINK epistasis analysis results for the top 20 interactions (sorted by p-value).

CHR1 SNP1 CHR2 SNP2 OR_INT STAT p-value

3 *rs4678497 17 *rs12601535 0.192129 35.8451 2.14E-09

1 *rs742257 11 rs10894641 0.190122 34.9169 3.45E-09

10 *rs11187157 19 *rs12974235 4.97802 34.4279 4.44E-09

2 rs4663576 12 *rs7297676 6.10375 34.3407 4.64E-09

1 ***rs2247213 1 rs1266384 4.74791 33.1941 8.37E-09

8 rs7015101 13 rs3850026 0.097299 32.9989 9.25E-09

9 *rs10963949 12 rs9804846 0.175805 32.8939 9.76E-09

2 rs13395344 15 rs11635372 0.244199 32.7967 1.03E-08

2 rs6757680 21 *rs9305669 36.8484 32.7904 1.03E-08

11 ***rs35579818 14 rs9671369 0.197519 32.783 1.03E-08

3 *rs2239621 15 rs12901294 7.98319 32.641 1.11E-08

14 **rs12436380 15 rs7181095 4.88222 32.4867 1.20E-08

5 rs12655716 11 kgp5016729 6.07171 32.4841 1.21E-08

2 *rs16850584 7 rs12699307 7.7585 32.4774 1.21E-08

3 rs9855001 9 rs914491 0.203519 32.4508 1.23E-08

6 rs2753172 8 *rs4872541 0.185917 32.4359 1.24E-08

1 *rs742257 11 rs12365003 5.65383 32.3512 1.29E-08

7 *rs10236884 20 ***rs6056615 6.88293 32.3418 1.30E-08

1 *rs497915 1 *rs4925659 8.12237 32.3167 1.31E-08

2 rs7575563 13 *rs7998309 8.22868 32.24 1.37E-08

CHR: Chromosome where the SNP is located; SNP: Single Nucleotide Polymorphism; OR_INT: Odds 
Ratio for the interaction; STAT: Chi-square statistic. SNP rs742257 was identified in two interaction models. 
*SNPs that have a RegulomeDB score of 1a-1f (S1 Table). **SNP that is an eQTL according to the GTEx 
database (S1 Table). *** SNP that has a RegulomeDB score of 1a-1f and is also an eQTL according to the 
GTEx database (S1 Table).

https://doi.org/10.1371/journal.pone.0321967.t002

https://doi.org/10.1371/journal.pone.0321967.t002
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Table 3.  Univariable Cox regression analysis results for the SNPs in the top 20 list.

SNP p-value HR 95% CI for HR

rs497915 0.0932 0.7398 0.5204 - 1.0517

rs742257 0.8921 1.0182 0.7841 - 1.3224

rs2247213 0.4321 0.9031 0.7003 - 1.1646

rs1266384 0.8725 0.9790 0.7557 - 1.2684

rs4925659 0.7286 1.0470 0.8078 - 1.3569

rs7575563 0.0020 0.6023 0.4367 - 0.8307

rs13395344 0.4688 0.9106 0.7066 - 1.1733

rs16850584 0.7794 1.0435 0.7747 - 1.4055

rs6757680 0.1885 0.7751 0.5303 - 1.1330

rs4663576 0.4768 1.0987 0.8478 - 1.4238

rs4678497 0.3100 1.1428 0.8832 - 1.4787

rs2239621 0.5895 0.9275 0.7055 - 1.2192

rs9855001 0.8379 1.0276 0.7916 - 1.3339

rs12655716 0.4489 0.8975 0.6785 - 1.1873

rs2753172 0.8073 1.0359 0.7801 - 1.3757

rs12699307 0.2793 0.8557 0.6453 - 1.1348

rs10236884 0.8238 0.9710 0.7492 - 1.2584

rs7015101 0.8810 1.0239 0.7511 - 1.3960

rs4872541 0.3616 1.1236 0.8748 - 1.4431

rs914491 0.4965 0.9084 0.6888 - 1.1981

rs10963949 0.0741 0.7933 0.6152 - 1.0228

rs11187157 0.1506 0.8295 0.6430 - 1.0703

rs35579818 0.4128 0.8932 0.6817 - 1.1704

kgp5016729 0.5553 0.9226 0.7058 - 1.2059

rs12365003 0.4055 0.8950 0.6891 - 1.1624

rs10894641 0.7766 1.0372 0.8059 - 1.3349

rs9804846 0.1501 1.2323 0.9272 - 1.6378

rs7297676 0.5850 1.0830 0.8135 - 1.4417

rs7998309 0.7625 0.9563 0.7158 - 1.2776

rs3850026 0.3621 0.8857 0.6823 - 1.1498

rs12436380 0.9745 0.9958 0.7675 - 1.2919

rs9671369 0.6859 1.0554 0.8127 - 1.3706

rs11635372 0.3729 1.1244 0.8688 - 1.4550

rs7181095 0.9477 1.0091 0.7693 - 1.3237

rs12601535 0.3118 1.1399 0.8844 - 1.4692

rs12974235 0.6020 0.9346 0.7249 - 1.2051

rs6056615 0.1965 0.8255 0.6170 - 1.1044

rs9305669 0.6541 0.9143 0.6178 - 1.3530

rs12901294 0.6892 0.9416 0.7012 - 1.2645

CI: Confidence Interval; HR: Hazard Ratio; SNP: Single Nucleotide Polymorphism. None of the p-values  
reached significance when corrected for multiple testing (Bonferroni corrected significance threshold p < 0.00128).

https://doi.org/10.1371/journal.pone.0321967.t003

https://doi.org/10.1371/journal.pone.0321967.t003
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better therapeutic agents and prognostic tools. In this study, by following a robust and easy-to-apply approach, we aimed 
to explore the SNP-SNP interactions that are associated with the local or distant recurrence-free survival times in a cohort 
of colorectal cancer patients from Canada.

Prognostic GWASs are widely performed studies. While they are quite popular, their analytical abilities are restricted to 
analysis of the relationship of individual variants to an outcome measure. This may potentially lead to missing at least a 
part of the “heritability” component of prognostic variability, which can be explained by interacting loci [11–14]. Previously, 
our group [30,31] and others [33–35] have seen this possibility and applied interaction analyses at candidate gene or 
pathway settings in colorectal cancer. A genome-wide interaction analysis, as we have done here, however, has not been 
done in colorectal cancer before. Our analysis explored candidate SNP-SNP interactions in relation to recurrence in col-
orectal cancer. While further studies are needed to validate these findings and the accuracy of the models, and assess the 
potential short-term and long-term effects of the SNP interactions, we invite all researchers with genetic and RMFS data to 
test our findings in their datasets.

There may be also a timely opportunity to investigate or confirm the biological features of the SNPs reported in this 
manuscript, and their relation to disease recurrence in colorectal cancer using experimental approaches. Note that many 
of the SNPs highlighted in our study were estimated to affect biological functions/gene regulation. In some cases, both 
SNPs in the interaction set were predicted to be functional (e.g., based on the RegulomeDB scores or GTEx eQTL infor-
mation). These SNPs are likely “lead SNPs” [47] that can be prioritized for further studies. In addition, literature search 
showed that some of the genes that SNPs identified here-in were located in (e.g., LAMB3 [48,49]; SYNE3 [50]; HRAS 
[51,52]; DIAPH3 [53]; NLRP3 [54,55]); PEBP4 [56]; GABRG3 [57]; LGALS8 [58]; OPCML [59]; MYO18A [60]; HAUS6 
[61,62]; HLX [63,64] and some of the genes that were linked to eQTLs identified here-in (e.g., HRAS [51,52]) were previ-
ously linked to colorectal cancer. Altogether, this information strengthens the potential biological connections of some of 
the SNPs identified in this study with colorectal cancer.

The key strengths and limitations of this study can be summarized as follows: PLINK [39] is a fast and robust tool and 
it handled our large dataset reasonably quickly (less than a day), however, the PLINK epistasis function currently can-
not adjust for covariates and can examine two SNP interactions only. Therefore, PLINK misses higher-order interactions 
(3-SNP and higher) and requires follow-up analyses with multivariable modeling to examine whether interactions are 
independent of established clinical covariates. There is also a need for robust tools that can handle time-to-event analyses 
while examining large number of interactions. The cohort for this study has a long follow-up time, but it included only Cau-
casian patients, and as such, results may not be applicable to other ethnicities. X-linked and Y-linked SNPs were excluded 
from the analysis, therefore additional information can be gained by examining the variants on these chromosomes in 
future studies. The SNP dataset included common SNPs with a MAF of at least 5%, hence, interactions involving rare 
variants also remain to be examined. Our cohort size was small and none of the p-values provided by PLINK remained 
significant after the Bonferroni correction. Therefore, further research in bigger cohorts with comparable characteristics 
(e.g., ancestry, treatment features) is required to test the results of this hypothesis generating study and before any of 
these interactions can be included in a prognostic model in the clinic. Lastly, this is the first time such an extensive interac-
tion analysis has been performed in colorectal cancer, and as such, our results encourage new ways to examine prognos-
tic biomarkers beyond the traditional GWAS approach.

Conclusions

Interaction analyses can identify collective relations of multi-variables in relation to a phenotype. While conducting 
genome-wide interaction studies is challenging, a few computational methods have been developed that can be utilized 
for such purposes. Here we present such a study performed using PLINK, the first genome-wide SNP-SNP interaction 
analysis in colorectal cancer outcomes. Our study brings new depth to the prognostic research, can inform future stud-
ies, and is expected to inspire other groups to integrate interaction analyses in their prognostic studies. Further studies 
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building on our findings can also advance prognostic research, identify new interactions, and help address the missing 
heritability in colorectal cancer prognosis.

Supporting information

S1 Table.  Information about the SNPs identified in this study. Chr: Chromosome; eQTL: expression Quantitative 
Trait Locus; MAF: Minor Allele Frequency; SNP: Single Nucleotide Polymorphism. * This SNP shares the same location 
as kgp5016729. ** This SNP shares the same location as kgp11888590. μAlternative interacting SNP identified through 
analysis of the genomic regions where the original top 20 interacting SNPs were located. £Reference genome: hg19.
(PDF)
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